Computes the numerical curl of functions
or the symbolic curl of characters
in arbitrary orthogonal coordinate systems.
curl(
f,
var,
params = list(),
coordinates = "cartesian",
accuracy = 4,
stepsize = NULL,
drop = TRUE
)
f %curl% var
array of characters
or a function
returning a numeric
array.
vector giving the variable names with respect to which the derivatives are to be computed and/or the point where the derivatives are to be evaluated. See derivative
.
list
of additional parameters passed to f
.
coordinate system to use. One of: cartesian
, polar
, spherical
, cylindrical
, parabolic
, parabolic-cylindrical
or a vector of scale factors for each varibale.
degree of accuracy for numerical derivatives.
finite differences stepsize for numerical derivatives. It is based on the precision of the machine by default.
if TRUE
, return the curl as a vector and not as an array
for vector-valued functions.
Vector for vector-valued functions when drop=TRUE
, array
otherwise.
The curl of a vector-valued function \(F_i\) at a point is represented by a
vector whose length and direction denote the magnitude and axis of the maximum
circulation.
In 2 dimensions, the curl
is computed in arbitrary orthogonal coordinate
systems using the scale factors \(h_i\) and the Levi-Civita symbol epsilon
:
$$\nabla \times F = \frac{1}{h_1h_2}\sum_{ij}\epsilon_{ij}\partial_i\Bigl(h_jF_j\Bigl)= \frac{1}{h_1h_2}\Biggl(\partial_1\Bigl(h_2F_2\Bigl)-\partial_2\Bigl(h_1F_1\Bigl)\Biggl)$$
In 3 dimensions:
$$(\nabla \times F)_k = \frac{h_k}{J}\sum_{ij}\epsilon_{ijk}\partial_i\Bigl(h_jF_j\Bigl)$$
where \(J=\prod_i h_i\). In \(m+2\) dimensions, the curl
is implemented in such
a way that the formula reduces correctly to the previous cases for \(m=0\) and \(m=1\):
$$(\nabla \times F)_{k_1\dots k_m} = \frac{h_{k_1}\cdots h_{k_m}}{J}\sum_{ij}\epsilon_{ijk_1\dots k_m}\partial_i\Bigl(h_jF_j\Bigl)$$
When \(F\) is an array
of vector-valued functions \(F_{d_1,\dots,d_n,j}\) the curl
is computed for each vector:
$$(\nabla \times F)_{d_1\dots d_n,k_1\dots k_m} = \frac{h_{k_1}\cdots h_{k_m}}{J}\sum_{ij}\epsilon_{ijk_1\dots k_m}\partial_i\Bigl(h_jF_{d_1\dots d_n,j}\Bigl)$$
f %curl% var
: binary operator with default parameters.
Guidotti E (2022). "calculus: High-Dimensional Numerical and Symbolic Calculus in R." Journal of Statistical Software, 104(5), 1-37. doi:10.18637/jss.v104.i05
Other differential operators:
derivative()
,
divergence()
,
gradient()
,
hessian()
,
jacobian()
,
laplacian()
### symbolic curl of a 2-d vector field
f <- c("x^3*y^2","x")
curl(f, var = c("x","y"))
#> [1] "(1) * 1 + (x^3 * (2 * y)) * -1"
### numerical curl of a 2-d vector field in (x=1, y=1)
f <- function(x,y) c(x^3*y^2, x)
curl(f, var = c(x=1, y=1))
#> [1] -1
### numerical curl of a 3-d vector field in (x=1, y=1, z=1)
f <- function(x,y,z) c(x^3*y^2, x, z)
curl(f, var = c(x=1, y=1, z=1))
#> [1] 0 0 -1
### vectorized interface
f <- function(x) c(x[1]^3*x[2]^2, x[1], x[3])
curl(f, var = c(1,1,1))
#> [1] 0 0 -1
### symbolic array of vector-valued 3-d functions
f <- array(c("x*y","x","y*z","y","x*z","z"), dim = c(2,3))
curl(f, var = c("x","y","z"))
#> [,1] [,2] [,3]
#> [1,] "(y) * -1" "(z) * -1" "(x) * -1"
#> [2,] "0" "0" "0"
### numeric array of vector-valued 3-d functions in (x=1, y=1, z=1)
f <- function(x,y,z) array(c(x*y,x,y*z,y,x*z,z), dim = c(2,3))
curl(f, var = c(x=1, y=1, z=1))
#> [,1] [,2] [,3]
#> [1,] -1 -1 -1
#> [2,] 0 0 0
### binary operator
c("x*y","y*z","x*z") %curl% c("x","y","z")
#> [1] "(y) * -1" "(z) * -1" "(x) * -1"