Computes the numerical divergence of `functions`

or the symbolic divergence of `characters`

in arbitrary orthogonal coordinate systems.

```
divergence(
f,
var,
params = list(),
coordinates = "cartesian",
accuracy = 4,
stepsize = NULL,
drop = TRUE
)
f %divergence% var
```

- f
array of

`characters`

or a`function`

returning a`numeric`

array.- var
vector giving the variable names with respect to which the derivatives are to be computed and/or the point where the derivatives are to be evaluated. See

`derivative`

.- params
`list`

of additional parameters passed to`f`

.- coordinates
coordinate system to use. One of:

`cartesian`

,`polar`

,`spherical`

,`cylindrical`

,`parabolic`

,`parabolic-cylindrical`

or a vector of scale factors for each varibale.- accuracy
degree of accuracy for numerical derivatives.

- stepsize
finite differences stepsize for numerical derivatives. It is based on the precision of the machine by default.

- drop
if

`TRUE`

, return the divergence as a scalar and not as an`array`

for vector-valued functions.

Scalar for vector-valued functions when `drop=TRUE`

, `array`

otherwise.

The divergence of a vector-valued function \(F_i\) produces a scalar value
\(\nabla \cdot F\) representing the volume density of the outward flux of the
vector field from an infinitesimal volume around a given point.
The `divergence`

is computed in arbitrary orthogonal coordinate systems using the
scale factors \(h_i\):

$$\nabla \cdot F = \frac{1}{J}\sum_i\partial_i\Biggl(\frac{J}{h_i}F_i\Biggl)$$

where \(J=\prod_ih_i\). When \(F\) is an `array`

of vector-valued functions
\(F_{d_1\dots d_n,i}\), the `divergence`

is computed for each vector:

$$(\nabla \cdot F)_{d_1\dots d_n} = \frac{1}{J}\sum_i\partial_i\Biggl(\frac{J}{h_i}F_{d_1\dots d_n,i}\Biggl)$$

`f %divergence% var`

: binary operator with default parameters.

Guidotti E (2022). "calculus: High-Dimensional Numerical and Symbolic Calculus in R." Journal of Statistical Software, 104(5), 1-37. doi:10.18637/jss.v104.i05

```
### symbolic divergence of a vector field
f <- c("x^2","y^3","z^4")
divergence(f, var = c("x","y","z"))
#> [1] "2 * x + 3 * y^2 + 4 * z^3"
### numerical divergence of a vector field in (x=1, y=1, z=1)
f <- function(x,y,z) c(x^2, y^3, z^4)
divergence(f, var = c(x=1, y=1, z=1))
#> [1] 9
### vectorized interface
f <- function(x) c(x[1]^2, x[2]^3, x[3]^4)
divergence(f, var = c(1,1,1))
#> [1] 9
### symbolic array of vector-valued 3-d functions
f <- array(c("x^2","x","y^2","y","z^2","z"), dim = c(2,3))
divergence(f, var = c("x","y","z"))
#> [1] "2 * x + 2 * y + 2 * z" "1 + 1 + 1"
### numeric array of vector-valued 3-d functions in (x=0, y=0, z=0)
f <- function(x,y,z) array(c(x^2,x,y^2,y,z^2,z), dim = c(2,3))
divergence(f, var = c(x=0, y=0, z=0))
#> [1] 0 3
### binary operator
c("x^2","y^3","z^4") %divergence% c("x","y","z")
#> [1] "2 * x + 3 * y^2 + 4 * z^3"
```